1. Write an EBNF description of a C++ float literal.

2. Using the first grammar in the lectures, show a parse tree and a leftmost derivation for the following statement:
 \[A = A \times (B \times C + A) \]

3. Show that the following grammar is ambiguous:
 \[
 \begin{align*}
 \langle S \rangle & \rightarrow \langle A \rangle \\
 \langle A \rangle & \rightarrow \langle A \rangle + \langle A \rangle \mid \langle \text{id} \rangle \\
 \langle \text{id} \rangle & \rightarrow \text{a|b|c}
 \end{align*}
 \]

4. Consider the following grammar:
 \[
 \begin{align*}
 \langle S \rangle & \rightarrow \text{a} \langle S \rangle \text{c} \langle B \rangle \mid \langle A \rangle \mid \text{b} \\
 \langle A \rangle & \rightarrow \text{c} \langle A \rangle \mid \text{c} \\
 \langle B \rangle & \rightarrow \text{d} \mid \langle A \rangle
 \end{align*}
 \]
 Which of the following sentences are in the language generated by the grammar? Show your work

 a. abcd
 b. accbd
 c. acbccc
 d. acd
 e. accc

5. Write a grammar for the language consisting of strings that have \(n \) copies of the letter A followed by the same number of copies of the letter T, where \(n > 0 \). For example, the empty string,
 \[\text{AT}, \]
 \[\text{AATT}, \]
 \[\text{AAAAAAAAATTTTTTTT} \]
 will be in the language but A, AAT, TTTT are not.