Practice Exercises

9.1 Under what circumstances do page faults occur? Describe the actions taken by the operating system when a page fault occurs.

9.2 Assume that you have a page-reference string for a process with $m$ frames (initially all empty). The page-reference string has length $p$; $n$ distinct page numbers occur in it. Answer these questions for any page-replacement algorithms:
   a. What is a lower bound on the number of page faults?
   b. What is an upper bound on the number of page faults?

9.3 Which of the following programming techniques and structures are “good” for a demand-paged environment? Which are “not good”? Explain your answers.
   a. Stack
   b. Hashed symbol table
   c. Sequential search
   d. Binary search
   e. Pure code
   f. Vector operations
   g. Indirection

9.4 Consider the following page-replacement algorithms. Rank these algorithms on a five-point scale from “bad” to “perfect” according to their page-fault rate. Separate those algorithms that suffer from Belady’s anomaly from those that do not.
   a. LRU replacement
Chapter 9  Virtual Memory

b. FIFO replacement
c. Optimal replacement
d. Second-chance replacement

9.5 When virtual memory is implemented in a computing system, there are certain costs associated with the technique and certain benefits. List the costs and the benefits. Is it possible for the costs to exceed the benefits? If it is, what measures can be taken to ensure that this does not happen?

9.6 An operating system supports a paged virtual memory, using a central processor with a cycle time of 1 microsecond. It costs an additional 1 microsecond to access a page other than the current one. Pages have 1000 words, and the paging device is a drum that rotates at 3000 revolutions per minute and transfers 1 million words per second. The following statistical measurements were obtained from the system:

- 1 percent of all instructions executed accessed a page other than the current page.
- Of the instructions that accessed another page, 80 percent accessed a page already in memory.
- When a new page was required, the replaced page was modified 50 percent of the time.

Calculate the effective instruction time on this system, assuming that the system is running one process only and that the processor is idle during drum transfers.

9.7 Consider the two-dimensional array A:

```java
int A[][] = new int[100][100];
```

where A[0][0] is at location 200, in a paged memory system with pages of size 200. A small process is in page 0 (locations 0 to 199) for manipulating the matrix; thus, every instruction fetch will be from page 0.

For three page frames, how many page faults are generated by the following array-initialization loops, using LRU replacement, and assuming page frame 1 has the process in it, and the other two are initially empty?

a. for (int j = 0; j < 100; j++)
   for (int i = 0; i < 100; i++)
   A[i][j] = 0;

b. for (int i = 0; i < 100; i++)
   for (int j = 0; j < 100; j++)
   A[i][j] = 0;

9.8 Consider the following page reference string:

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

How many page faults would occur for the following replacement algorithms, assuming one, two, three, four, five, six, or seven frames?
Remember all frames are initially empty, so your first unique pages will all cost one fault each.

- LRU replacement
- FIFO replacement
- Optimal replacement

9.9 Suppose that you want to use a paging algorithm that requires a reference bit (such as second-chance replacement or working-set model), but the hardware does not provide one. Sketch how you could simulate a reference bit even if one were not provided by the hardware, or explain why it is not possible to do so. If it is possible, calculate what the cost would be.

9.10 You have devised a new page-replacement algorithm that you think may be optimal. In some contorted test cases, Belady’s anomaly occurs. Is the new algorithm optimal? Explain your answer.

9.11 Segmentation is similar to paging but uses variable-sized “pages.” Define two segment-replacement algorithms based on FIFO and LRU page-replacement schemes. Remember that since segments are not the same size, the segment that is chosen to be replaced may not be big enough to leave enough consecutive locations for the needed segment. Consider strategies for systems where segments cannot be relocated, and those for systems where they can.

9.12 Consider a demand-paged computer system where the degree of multiprogramming is currently fixed at four. The system was recently measured to determine utilization of CPU and the paging disk. The results are one of the following alternatives. For each case, what is happening? Can the degree of multiprogramming be increased to increase the CPU utilization? Is the paging helping?

a. CPU utilization 13 percent; disk utilization 97 percent
b. CPU utilization 87 percent; disk utilization 3 percent
c. CPU utilization 13 percent; disk utilization 3 percent

9.13 We have an operating system for a machine that uses base and limit registers, but we have modified the machine to provide a page table. Can the page tables be set up to simulate base and limit registers? How can they be, or why can they not be?